

Infinitely Repeated Games: Utility

Game Theory Course: Jackson, Leyton-Brown & Shoham

Game Theory Course: Jackson, Leyton-Brown & Shoham

Infinitely Repeated Games

What is a player's utility for playing an infinitely repeated game?

• Can we write it in extensive form?

Infinitely Repeated Games

What is a player's utility for playing an infinitely repeated game?

- Can we write it in extensive form?
- The sum of payoffs in the stage game?

Infinitely Repeated Games

What is a player's utility for playing an infinitely repeated game?

- Can we write it in extensive form?
- The sum of payoffs in the stage game?

Definition

Given an infinite sequence of payoffs r_1, r_2, \ldots for player *i*, the average reward of *i* is

$$\lim_{k \to \infty} \sum_{j=1}^k \frac{r_j}{k}.$$

Discounted reward

Definition

Given an infinite sequence of payoffs r_1, r_2, \ldots for player *i* and discount factor β with $0 < \beta < 1$, *i*'s future discounted reward is

- $\overline{\sum_{j=1}^{\infty}}\beta^j r_j$
- Two equivalent interpretations of the discount factor:
 - 1. the agent cares more about his well-being in the near term than in the long term

Discounted reward

Definition

Given an infinite sequence of payoffs r_1, r_2, \ldots for player i and discount factor β with $0 < \beta < 1$, i's future discounted reward is

- $\sum_{j=1} \beta^j r_j.$
- Two equivalent interpretations of the discount factor:
 - 1. the agent cares more about his well-being in the near term than in the long term
 - 2. the agent cares about the future just as much as the present, but with probability 1β the game will end in any given round.

